Interpolant Strength

نویسندگان

  • Vijay D'Silva
  • Daniel Kroening
  • Mitra Purandare
  • Georg Weissenbacher
چکیده

Interpolant-based model checking is an approximate method for computing invariants of transition systems. The performance of the model checker is contingent on the approximation computed, which in turn depends on the logical strength of the interpolants. A good approximation is coarse enough to enable rapid convergence but strong enough to be contained within the weakest inductive invariant. We present a system for constructing propositional interpolants of different strength from a resolution refutation. This system subsumes existing methods and allows interpolation systems to be ordered by the logical strength of the obtained interpolants. Interpolants of different strength can also be obtained by transforming a resolution proof. We analyse an existing proof transformation, generalise it, and characterise the interpolants obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolant Strength Revisited

Craig’s interpolation theorem has numerous applications in model checking, automated reasoning, and synthesis. There is a variety of interpolation systems which derive interpolants from refutation proofs; these systems are ad-hoc and rigid in the sense that they provide exactly one interpolant for a given proof. In previous work, we introduced a parametrised interpolation system which subsumes ...

متن کامل

HIERARCHICAL COMPUTATION OF HERMITE SPHERICAL INTERPOLANT

In this paper, we propose to extend the hierarchical bivariateHermite Interpolant to the spherical case. Let $T$ be an arbitraryspherical triangle of the unit sphere $S$ and  let $u$ be a functiondefined over the triangle $T$. For $kin mathbb{N}$, we consider aHermite spherical Interpolant problem $H_k$ defined by some datascheme $mathcal{D}_k(u)$ and which admits a unique solution $p_k$in the ...

متن کامل

Pyramid algorithms for barycentric rational interpolation

We present a new perspective on the Floater–Hormann interpolant. This interpolant is rational of degree (n, d), reproduces polynomials of degree d, and has no real poles. By casting the evaluation of this interpolant as a pyramid algorithm, we first demonstrate a close relation to Neville’s algorithm. We then derive an O(nd) algorithm for computing the barycentric weights of the Floater–Hormann...

متن کامل

An Interpolant Based on Line Segment Voronoi Diagrams

This paper considers the interpolation for multi-dimensional data using Voronoi diagrams. Sibson's interpolant is well-known as an interpolation method using Voronoi diagrams for discretely distributed data, and it is extended to continuously distributed data by Gross. On the other hand, the authors studied another interpolation method using Voronoi diagrams recently. This paper outlines the au...

متن کامل

Shape Preserving Interpolation Using C2 Rational Cubic Spline

Abstract: This study proposes new C rational cubic spline interpolant of the form cubic/quadratic with three shape parameters to preserves the geometric properties of the given data sets. Sufficient conditions for the positivity and data constrained modeling of the rational interpolant are derived on one parameter while the remaining two parameters can further be utilized to change and modify t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010